Franco Saliola

Professeur

Photo de Franco Saliola
Téléphone : (514) 987-3000 poste 7791
Local : PK-4235
Informations générales

Unités de recherche

  • Laboratoire de combinatoire et d'informatique mathématique (LACIM)
Enseignement

Directions de thèses et mémoires

Thèses de doctorat
Mémoires

Publications

Articles scientifiques
  • Orellana, R., Saliola, F., Schilling, A. et Zabrocki, M. (2022). Plethysm and the algebra of uniform block permutations. Algebraic Combinatorics, 5(5), 1165–1203. http://dx.doi.org/10.5802/alco.243.
  • Margolis, S., Saliola, F.V. et Steinberg, B. (2021). Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry. Memoirs of the American Mathematical Society, 274, article 1345. http://dx.doi.org/10.1090/memo/1345.
  • Colmenarejo, L., Orellana, R., Saliola, F., Schilling, A. et Zabrocki, M. (2020). An insertion algorithm on multiset partitions with applications to diagram algebras. Journal of Algebra, 557, 97–128. http://dx.doi.org/10.1016/j.jalgebra.2020.04.010.
  • Dieker, A.B. et Saliola, F.V. (2018). Spectral analysis of random-to-random Markov chains. Advances in Mathematics, 323, 427–485. http://dx.doi.org/10.1016/j.aim.2017.10.034.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2017). Multiplicative structures of the immaculate basis of non-commutative symmetric functions. Journal of Combinatorial Theory. Series A, 152, 10–44. http://dx.doi.org/10.1016/j.jcta.2017.05.003.
  • Margolis, S., Saliola, F. et Steinberg, B. (2015). Combinatorial topology and the global dimension of algebras arising in combinatorics. Journal of the European Mathematical Society (JEMS), 17(12), 3037–3080. http://dx.doi.org/10.4171/JEMS/579.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2015). Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proceedings of the American Mathematical Society, 143(3), 991–1000. https://www.ams.org/journals/proc/2015-143-03/S0002-9939-2014-12298-2/?active=current.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2014). A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canadian Journal of Mathematics/Journal canadien de mathématiques, 66(3), 525–565. http://dx.doi.org/10.4153/CJM-2013-013-0.
  • Berg, C., Saliola, F. et Serrano, L. (2014). Combinatorial expansions for families of noncommutative k-Schur functions. SIAM Journal on Discrete Mathematics, 28(3), 1074–1092. http://dx.doi.org/10.1137/120890454.
  • Berg, C., Saliola, F. et Serrano, L. (2014). Pieri operators on the affine nilCoxeter algebra. Transactions of the American Mathematical Society, 366(1), 531–546. http://dx.doi.org/10.1090/S0002-9947-2013-05895-3.
  • Margolis, S., Saliola, F. et Steinberg, B. (2014). Semigroups embeddable in hyperplane face monoids. Semigroup Forum, 89(1), 236–248. http://dx.doi.org/10.1007/s00233-013-9542-3.
  • Reiner, V., Saliola, F. et Welker, V. (2014). Spectra of symmetrized shuffling operators. Memoirs of the American Mathematical Society, 228, article 1072. http://dx.doi.org/10.1090/memo/1072.
  • Berg, C., Saliola, F. et Serrano, L. (2013). The down operator and expansions of near rectangular k-Schur functions. Journal of Combinatorial Theory. Series A, 120(3), 623–636. http://dx.doi.org/10.1016/j.jcta.2012.11.004.
  • Saliola, F. (2012). Eigenvectors for a random walk on a left-regular band. Advances in Applied Mathematics, 48(2), 306–311. http://dx.doi.org/10.1016/j.aam.2011.09.002.
  • Saliola, F. et Thomas, H. (2012). Oriented Interval Greedoids. Discrete and Computational Geometry, 47(1), 64–105. http://dx.doi.org/10.1007/s00454-011-9383-3.
  • Aguiar, M., André, C., Benedetti, C., Bergeron, N., Chen, Z., Diaconis, P., Hendrickson, A., Hsiao, S., Isaacs, I.M., Jedwab, A., Johnson, K., Karaali, G., Lauve, A., Le, T., Lewis, S., Li, H., Magaard, K., Marberg, E., Novelli, J.-C., Pang, A., Saliola, F.,... Zabrocki, M. (2012). Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Advances in Mathematics, 229(4), 2310–2337. http://dx.doi.org/10.1016/j.aim.2011.12.024.
  • Berg, C., Bergeron, N., Bhargava, S. et Saliola, F. (2011). Primitive orthogonal idempotents for R-trivial monoids. Journal of Algebra, 348(1), 446–461. http://dx.doi.org/10.1016/j.jalgebra.2011.10.006.
  • Novelli, J.-C., Saliola, F. et Thibon, J.-Y. (2010). Representation theory of the higher-order peak algebras. Journal of Algebraic Combinatorics, 32(4), 465–495. http://dx.doi.org/10.1007/s10801-010-0223-y.
  • Saliola, F.V. (2010). The Loewy length of the descent Algebra of type D. Algebras and Representation Theory, 13(2), 243–254. http://dx.doi.org/10.1007/s10468-008-9119-0.
  • Saliola, F.V. (2009). The face semigroup Algebra of a hyperplane arrangement. Canadian Journal of Mathematics/Journal canadien de mathématiques, 61(4), 904–929. http://dx.doi.org/10.4153/CJM-2009-046-2.
  • Glen, A., Lauve, A. et Saliola, F.V. (2008). A note on the Markoff condition and central words. Information Processing Letters, 105(6), 241–244. http://dx.doi.org/10.1016/j.ipl.2007.09.005.
  • Saliola, F.V. (2008). On the quiver of the descent algebra. Journal of Algebra, 320(11), 3866–3894. http://dx.doi.org/10.1016/j.jalgebra.2008.07.009.
  • Saliola, F.V. (2007). The quiver of the semigroup algebra of a left regular band. International Journal of Algebra and Computation, 17(8), 1593–1610. http://dx.doi.org/10.1142/S0218196707004219.
  • Saliola, F. et Whiteley, W. (2004). Constraining plane configurations in CAD: Circles, lines, and angles in the plane. SIAM Journal on Discrete Mathematics, 18(2), 246–271. http://dx.doi.org/10.1137/S0895480100374138.
Livres
  • Berstel, J., Lauve, A., Reutenauer, C. et Saliola, F.V. (2008). Combinatorics on Words: Christoffel Words and Repetitions in Words. American Mathematical Society.
    Notes: vol. 27 of CRM Monograph Series
Actes de colloque
  • Colmenarejo, L., Orellana, R., Saliola, F., Schilling, A. et Zabrocki, M. (2020). An insertion algorithm for diagram algebras, Séminaire Lotharingien de Combinatoire – FPSAC 2020. Proceedings of the 32nd International Conference on "Formal Power Series and Algebraic Combinatorics", July 6 – 24, 2020, (84B.48). https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2020/48.html.
  • S. Margolis, F.S., and B. Steinberg,. (2014). Poset topology and homological invariants of algebras arising in algebraic combinatorics. Dans DMTCS Proceedings: 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), (vol. AT, p. 71–82). http://dx.doi.org/10.46298/dmtcs.2381.
  • Berg, C., Bergeron, N., Saliola, F., Serrano, L. et Zabrocki, M. (2013). The immaculate basis of the non-commutative symmetric functions (Extended Abstract). Dans DMTCS Proceedings: 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), (vol. AS, p. 265-276). https://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewFile/dmAS0123/4176.pdf.
  • Berg, C., Saliola, F. et Serrano, L. (2012). The down operator and expansions of near rectangular k-Schur functions. Dans DMTCS Proceedings: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), (vol. AR, p. 433-444). http://dx.doi.org/10.46298/dmtcs.3052.
  • Berg, C., Bergeron, N., Bhargava, S. et Saliola, F. (2011). Primitive orthogonal idempotents for R-trivial monoids. Dans DMTCS Proceedings: 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), (vol. AO, p. 123-134). http://dx.doi.org/10.46298/dmtcs.2896.
  • Aguiar, M., André, C., Benedetti, C., Bergeron, N., Chen, Z., Diaconis, P., Hendrickson, A., Hsiao, S., Isaacs, I.M., Jedwab, A., Johnson, K., Karaali, G., Lauve, A., Le, T., Lewis, S., Li, H., Magaard, K., Marberg, E., Novelli, J.-C., Pang, A., Saliola, F.,... Zabrocki, M. (2011). Supercharacters, symmetric functions in noncommuting variables (extended abstract). Dans DMTCS Proceedings: 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), (vol. AO, p. 3-14). http://dx.doi.org/10.46298/dmtcs.2967.

Département de mathématiques

Le Département de mathématiques de l’UQAM regroupe plus d’une quarantaine de professeurs, et offre 11 programmes au premier cycle et cycles supérieurs en plus de répondre aux besoins de plusieurs autres programmes de premier cycle. Les activités du département, qu'elles soient en recherche ou en enseignement, couvrent un large spectre, incluant la didactique des mathématiques à tous les niveaux scolaires, les mathématiques fondamentales, la statistique, l'actuariat et les mathématiques financières.

Suivez-nous

Coordonnées

Département de mathématiques
Local PK-5151
201, Avenue du Président-Kennedy
Montréal (Québec) H2X 3Y7