Carolyn Kieran-Sauvé

Photo de Carolyn Kieran-Sauvé

Carolyn Kieran-Sauvé

Département de mathématiques

Poste : Professeure émérite

Courriel : kieran-sauve.carolyn@uqam.ca

Téléphone : (514) 987-3000 poste 7793

Local : PK-5611

Autre courriel : carkie2@yahoo.ca

Domaines d'expertise

  • Enseignement et apprentissage de l'algèbre et algèbre précoce ("early algebra")
  • Utilisation de la technologie dans l'enseignement et l'apprentissage des mathématiques, spécialité : algèbre
  • Raisonnement algébrique
Informations générales

Liens d’intérêt

Partenaires (organismes, entreprises)

  • Algèbre en Partenariat avec la Technologie en Éducation (http://profmath.uqam.ca/~apte/)

Affiliations externes principales

  • Universidad de Colima, Mexique
  • International Group for the Psychology of Mathematics Education (PME)
  • Canadian Mathematics Education Study Group (CMESG)
  • National Council of Teachers of Mathematics (NCTM)
Enseignement et supervision

Direction de thèses et de mémoires (Depuis 2006) et d’essais doctoraux (depuis 2014)

  • Jeannotte, Doris. (2015). Raisonnement mathématique : proposition d'un modèle conceptuel pour l'apprentissage et l'enseignement au primaire et au secondaire. (Thèse de doctorat). Université du Québec à Montréal. Récupéré d’Archipel, l’archive de publications électroniques de l’UQAM. http://www.archipel.uqam.ca/8129.

  • Djédjé, Valérie. (2006). Étude des éléments de support de l'implantation des technologies de l'information et de la communication dans deux écoles secondaires générales et publiques en Côte d'Ivoire. (Thèse de doctorat). Université du Québec à Montréal. Récupéré d’Archipel, l’archive de publications électroniques de l’UQAM. http://www.archipel.uqam.ca/9694.

  • Debien, Josianne. (2010). Répertorier les modalités favorisant une démarche de développement professionnel chez les enseignants de mathématique de niveau secondaire. (Mémoire de maîtrise). Université du Québec à Montréal. Récupéré d’Archipel, l’archive de publications électroniques de l’UQAM. http://www.archipel.uqam.ca/2789.

  • Damboise, Caroline. (2007). Rôle d'un logiciel de manipulation symbolique dans l'apprentissage de l'algèbre au secondaire. (Mémoire de maîtrise). Université du Québec à Montréal. Récupéré d’Archipel, l’archive de publications électroniques de l’UQAM. http://www.archipel.uqam.ca/3253.

Autres directions et supervisions

  • Valérie Djédjé (2006). "Étude des éléments de support de l'implantation des technologies de l'information et de la communication (TIC) dans les écoles secondaires générales et publiques en Côte d'Ivoire" (Thèse de doctorat en éducation). Université du Québec à Montréal.
  • Caroline Damboise (2007). "Rôle d'un logiciel de manipulation symbolique dans l'apprentissage de l'algèbre au secondaire" Mémoire en didactique des mathématiques. Université du Québec à Montréal, Département de mathématiques.
  • Jean-Frédéric Lacroix (2007). "Comparaison de la réussite des élèves dans la réduction d'expressions algébriques et numériques contenant des puissances" Mémoire en didactique des mathématiques. Université du Québec à Montréal, Département de mathématiques.
  • Cesar Martínez Hernández (2013). "El desarrollo del conocimiento algebraico de estudiantes en un ambiente CAS con tareas diseñadas desde un enfoque técnico-teórico : Un estudio sobre la simplificación de espresiones racionales" Thèse de doctorat en didactique des mathématiques. Mexico City (Mexique), CINVESTAV del IPN.
  • Jeannotte, Doris (2015). « Raisonnement mathématique : Un modèle conceptuel pour l'enseignement et l'apprentissage au primaire et au secondaire » Thèse. Montréal (Québec, Canada), Université du Québec à Montréal, Doctorat en éducation. https://archipel.uqam.ca/8129/
Publications

Jeannotte, D. et Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1–16. http://dx.doi.org/10.1007/s10649-017-9761-8.


Solares, A. et Kieran, C. (2013). Articulating syntactic and numeric perspectives on equivalence: The case of rational expressions. Educational Studies in Mathematics, 84(1), 115–148. http://dx.doi.org/10.1007/s10649-013-9473-7.


Guzmán, J. et Kieran, C. (2013). Becoming aware of mathematical gaps in new curricular materials: A resource-based analysis of teaching practice. The Mathematics Enthusiast, 10(1-2), 163–190. Récupéré de https://scholarworks.umt.edu/tme/vol10/iss1/9.


Kieran, C., Boileau, A., Tanguay, D. et Drijvers, P. (2013). Design researchers’ documentational genesis in a study on equivalence of algebraic expressions. ZDM, Mathematics Education, 45(7), 1045–1056. http://dx.doi.org/10.1007/s11858-013-0516-4.


Kieran, C. (2012). Commentary: Characterizing meta-level mathematical discourse and accounting theoretically for its development – The instructional and the spontaneous. International Journal of Educational Research, 51-52, 146–150. http://dx.doi.org/10.1016/j.ijer.2011.12.014.


Kieran, C. (2011). [Note de lecture du livre "Ressources vives. Le travail documentaire des professeurs en mathématiques", de G. Gueudet et L. Trouche (dir.)]. Recherches en didactique des mathématiques, 31(1), 131–134.

Openurl imagette


Hitt, F. et Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment with tasks designed from a Task-Technique-Theory perspective. International Journal of Computers for Mathematical Learning, 14(2), 121–152. http://dx.doi.org/10.1007/s10758-009-9151-0.


Kieran, C. (2007). Developing algebraic reasoning: The role of sequenced tasks and teacher questions from the primary to the early secondary school levels. Quadrante : Revista de Investigação em Educação Matemática, XVI(1), 5–26.


Kieran, C. (2007). Interpreting and assessing the answers given by the CAS expert: A reaction paper. The International Journal for Technology in Mathematics Education, 14(2), 103–107.
Notes: (CAME 4 Special Issue, edited by M.K. Heid)

Openurl imagette


Proulx, J., Descamps-Bednarz, N. et Kieran, C. (2006). Caractéristiques des explications orales en classe de mathématiques : construction d'un cadre d'analyse pour rendre compte de la pratique des futurs enseignants et futures enseignantes de mathematiques du secondaire. Canadian Journal of Science, Mathematics and Technology Education, 6(3), 267–292. http://dx.doi.org/10.1080/14926150609556702.


Kieran, C., Drijvers, P.,(avec Boileau, A., Hitt, F., Tanguay, D., Saldanha, L. et Guzmán, J.). (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11, 205–263. http://dx.doi.org/10.1007/s10758-006-0006-7.


Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139–151.


Guzmán, J., Kieran, C. et Squalli, H. (2003). La calculadora con pantalla multilínea y el surgimiento de estrategias numéricas en alumnos de primero, segundo y tercer año de secundaria. Revista Educación Matemática, 15(2), 105–127. Récupéré de http://www.revista-educacion-matematica.org.mx/descargas/vol15/vol15-2/vol15-2-5.pdf.


Hershkowitz, R. et Kieran, C. (2002). Fusionner des représentations mathématiques machinalement ou en réfléchissant : expériences d'utilisation de calculatrices graphiques. Sciences et techniques éducatives, 9(1-2), 201–218. http://dx.doi.org/10.3406/stice.2002.1505.


Sfard, A. et Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students' mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76. http://dx.doi.org/10.1207/S15327884MCA0801_04.


Kieran, C. (2001). The mathematical discourse of 13-year-old partnered problem solving and its relation to the mathematics that emerges. Educational Studies in Mathematics, 46(1-3), 187–228. http://dx.doi.org/10.1023/A:1014040725558.


Kieran, C. et Sfard, A. (1999). Seeing through symbols: The case of equivalent expressions. Focus on learning problems in mathematics, 21(1), 1–17.

Openurl imagette


Kieran, C. (1995). A new look at school algebra – past, present, and future. The Journal of Mathematical Behavior, 14(1), 7–12. http://dx.doi.org/10.1016/0732-3123(95)90020-9.


Dugdale, S., Thompson, P.W., Harvey, W., Demana, F., Waits, B.K., Kieran, C.,...Christmas, P. (1995). Technology and algebra curriculum reform: Current issues, potential directions, and research questions. Journal of Computers in Mathematics and Science Teaching, 14, 325–357.


Kieran, C. (1994). Doing and seeing things differently: A 25-year retrospective of mathematics education research on learning. Journal for Research in Mathematics Education, 25(6), 583–607. http://dx.doi.org/10.2307/749574.


Kieran, C. et Hillel, J. (1990). It's tough when you have to make the triangles angle: Insights from a computer-based geometry environment. Journal of Mathematical Behavior, 9, 99–127.


Kieran, C. et Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva psicológica. Enseñanza de las Ciencias, 7(3), 229–240. Récupéré de https://www.raco.cat/index.php/Ensenanza/article/view/51268.


Hillel, J., Kieran, C. et Gurtner, J.-L. (1989). Solving structured geometric tasks on the computer: The role of feedback in generating strategies. Educational Studies in Mathematics, 20(1), 1–39. Récupéré de https://www.jstor.org/stable/3482560.


Hillel, J. et Kieran, C. (1987). Schemas used by 12-year-olds in solving selected turtle geometry tasks. Recherches en didactique des mathématiques, 8(1.2), 61–102.

Openurl imagette


Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326. Récupéré de https://www.jstor.org/stable/3482333.


Herscovics, N. et Kieran, C. (1980). Constructing meaning for the concept of equation. The Mathematics Teacher, 73(8), 572–580. Récupéré de https://www.jstor.org/stable/27962179.


Kieran, C. Task design frameworks in mathematics education research: An example of a domain-specific frame for algebra learning with technological tools.
Notes: À paraître


Kieran, C. (2018). Algebra teaching and learning. Dans S. Lerman (dir.). Encyclopedia of Mathematics Education (Éd. mise à jour et rév.). Cham, Suisse : Springer. http://dx.doi.org/10.1007/978-3-319-77487-9_6-5.


Kieran, C. (2018). Conclusions and looking ahead. Dans C. Kieran (dir.). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (p. 427–438). New York : Springer.


Kieran, C. (2018). Introduction. Dans C. Kieran (dir.). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (p. ix-xiii). New York : Springer.


Kieran, C. (2018). Part V: Preface – Planning and assessment: Teachers and students as central actors. Dans A. Kajander, J. Holm et E.J. Chernoff (dir.). Teaching and learning secondary school mathematics: Canadian perspectives in an international context (p. 435–439). New York : Springer.


Kieran, C. (2018). Seeking, using, and expressing structure in numbers and numerical operations: A fundamental path to developing early algebraic thinking. Dans C. Kieran (dir.). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (p. 79–105). New York : Springer.


Kieran, C. (2017). Cognitive neuroscience and algebra: Challenging some traditional beliefs. Dans S. Stewart (dir.). And the rest is just algebra (p. 157–172). New York : Springer.


Kieran, C. (2016). A historical perspective on mathematics education research in Canada: The emergence of a community. Dans P. Liljedahl, D. Allan, O. Chapman, et al. (dir.). 40 Years of CMESG [Les 40 ans du GCEDM] (p. 255–278). Burnaby, BC : CMESG. Récupéré de http://www.cmesg.org/wp-content/uploads/2016/06/Special-Issue-website.pdf.


Kieran, C. et Drijvers, P. (2016). Digital technology and mathematics education: Core ideas and key dimensions of Michèle Artigue’s theoretical work on digital tools and its impact on mathematics education research. Dans B.R. Hodgson, A. Kuzniak et J.-B. Lagrange (dir.). The didactics of mathematics: Approaches and issues. A homage to Michèle Artigue (p. 123–142). New York : Springer.


Kieran, C. et Towers, J. (2016). From theory to observational data (and back again). Dans P. Liljedahl, D. Allan, O. Chapman, et al. (dir.). 40 Years of CMESG [Les 40 ans du GCEDM] (p. 161–167). Burnaby, BC : CMESG. Récupéré de http://www.cmesg.org/wp-content/uploads/2016/06/Special-Issue-website.pdf.


Kieran, C., Doorman, L.M. et Ohtani, M. (2015). Frameworks and principles for task design. Dans A. Watson et M. Ohtani (dir.). Task design in mathematics education (p. 19–81). New York : Springer.


Kieran, C. (2014). Algebra teaching and learning. Dans S. Lerman (dir.). Encyclopedia of Mathematics Education (p. 27–32). Dordrecht, Pays-Bas : Springer. http://dx.doi.org/10.1007/978-94-007-4978-8_6.


Martinez, C., Guzmán, J. et Kieran, C. (2014). El papel de CAS en la promoción del razonimiento algebraico y en el surgimiento de teoría. Dans L. López Vera (dir.). Tecnologia computacional en la enseñanza de las matemáticas (p. 49–56). Nuevo Léon, México : Publicaciones UANL.


Kieran, C. (2013). Entretien avec Carolyn Kieran. Dans J. Proulx (dir.). De la didactique des mathématiques : entretiens avec ses batisseurs (p. 145–169). Québec : Presses de l’Université du Québec.


Kieran, C., Krainer, K. et Shaugnessy, J.M. (2013). Linking research and practice: Teachers as key stakeholders in mathematics education research. Dans M.A. Clements, A. Bishop, C. Keitel, J. Kilpatrick et F. Leung (dir.). Third international handbook of mathematics education (p. 361–392). Dordrecht, Pays-Bas : Springer.


Kieran, C. (2013). The false dichotomy in mathematics education between conceptual understanding and procedural skills: An example from algebra. Dans K. Leatham (dir.). Vital directions in mathematics education research (p. 153–171). New York : Springer.


Kieran, C., Tanguay, D. et Solares, A. (2012). Researcher-designed resources and their adaptation within classroom teaching practice: Shaping both the implicit and the explicit. Dans G. Gueudet, B. Pepin et L. Trouche (dir.). From text to "lived" resources : Mathematics curriculum material and teacher development (p. 189–213). New York : Springer.


Kieran, C. (2011). Overall commentary on early algebraization: Perspectives for research and teaching. Dans J. Cai et E. Knuth (dir.). Overall commentary on early algebraization: Perspectives for research and teaching (p. 579–593). New York : Springer.


Kieran, C. et Guzmán, J. (2010). Role of task and technology in provoking teacher change: A case of proofs and proving in high school algebra. Dans R. Leikin et R. Zazkis (dir.). Learning through teaching mathematics: Development of teachers' knowledge and expertise in practice (p. 127–152). New York : Springer.


Drijvers, P., Kieran, C. et Mariotti, M.-A. (2009). Integrating technology into mathematics education: Theoretical perspectives. Dans C. Hoyles et J.-B. Lagrange (dir.). Mathematics education and technology: Rethinking the terrain (p. 89–132). New York : Springer.


Kieran, C. et Saldanha, L. (2008). Designing tasks for the co-development of conceptual and technical knowledge in CAS activity: An example from factoring. Dans K. Heid et G.W. Blume (dir.). Research on technology and the teaching and learning of mathematics: Syntheses, cases, and perspectives (vol. 2, p. 393–414). Greenwich, CT : Information Age Publishing.


Kieran, C. et Guzmán, J. (2007). Interaction entre calculatrice technique et théorie : émergence de structures numériques chez des élèves de 12 à 15 ans dans un environnement calculatrice. Dans R. Floris et F. Conne (dir.). Environnements informatiques, enjeux pour l’enseignement des mathématiques (p. 61–74). Genève : deBoeck.


Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. Dans F.K. Lester (dir.). Second handbook of research on mathematics teaching and learning (p. 707–762). Greenwich, CT : Information Age Publishing.


Kieran, C. (2006). Research on the learning and teaching of algebra. Dans A. Gutiérrez et P. Boero (dir.). Handbook of research on the psychology of mathematics education (p. 11–50). Rotterdam : Sense.


Kieran, C. et Guzmán, J. (2006). The number-theoretic experience of 12- to 15-year-olds in a calculator environment: The intertwining co-emergence of technique and theory. Dans R. Zazkis et S.R. Campbell (dir.). Number theory in mathematics education (p. 173–200). Mahwah, NJ : Lawrence Erlbaum.


Kieran, C. et Guzmán, J. (2005). Five steps to zero: Students developing elementary number theory concepts when using calculators. Dans W.J. Masalski (dir.). Technology-supported mathematics learning environments: Sixty-seventh yearbook (p. 35–50). Reston, VA : National Council of Teachers of Mathematics.


Kieran, C. et Yerushalmy, M. (2004). Research on the role of technological environments in algebra learning and teaching. Dans K. Stacey, H. Chick et M. Kendal (dir.). The future of the teaching and learning of algebra: The 12th ICMI study (p. 99–152). Dordrecht, Pays-Bas : Kluwer Academic Publishers.


Kieran, C. (2004). The core of algebra: Reflections on its main activities. Dans K. Stacey, H. Chick et M. Kendal (dir.). The future of the teaching and learning of algebra: The 12th ICMI study (p. 21–34). Dordrecht, Pays-Bas : Kluwer Academic Publishers.


Cedillo, T. et Kieran, C. (2003). Initiating students into algebra with symbol-manipulating calculators. Dans J.T. Fey, A. Cuoco, C. Kieran, L. McMullin et R.M. Zbiek (dir.). Computer algebra systems in secondary school mathematics education (p. 219–239). Reston, VA : National Council of Teachers of Mathematics.


Kieran, C. (2003). The transition from arithmetic to algebra: A model for conceptualizing school algebra and the role of computer technology in supporting the development of algebraic thinking. Dans E. Filloy (dir.). Matemática educativa: Aspectos de la investigación actual (p. 121–142). Mexico City : Fondo de Cultura Económica.


Kieran, C. (2003). The twentieth century emergence of the Canadian mathematics education research community. Dans G. Stanic et J. Kilpatrick (dir.). A history of school mathematics (p. 1701–1778). Reston, VA : National Council of Teachers of Mathematics.


Kieran, C. (2002). A historical perspective on mathematics education research in Canada: The emergence of a community. Dans E. Simmt et B. Davis (dir.). Proceedings of the 2002 Annual Meeting of the Canadian Mathematics Education Study Group (p. 165–186). Kingston, ON : CMESG Program Committee. Récupéré de http://www.cmesg.org/wp-content/uploads/2015/01/CMESG2002.pdf.


Kieran, C. (2002). Exploring the mathematical discourse of 13-year-old partnered problem solving and its relationship to the mathematics that emerges. Dans C. Kieran, E. Forman et A. Sfard (dir.). Learning discourse: Discursive approaches to research in mathematics education (p. 187–228). Dordrecht, Pays-Bas : Kluwer Academic.


Sfard, A. et Kieran, C. (2001). Preparing teachers for handling students' mathematical communication: Gathering knowledge and building tools. Dans F.L. Lin et T.J. Cooney (dir.). Making sense of mathematics teacher education (p. 187–205). Dordrecht, Pays-Bas : Kluwer Academic Publishers.


Kieran, C. (1998). Models in mathematics education research: A broader view of research results. Dans A. Sierpinska et J. Kilpatrick (dir.). Mathematics education as a research domain: A search for identity (vol. 1, p. 213–225). Dordrecht, Pays-Bas : Kluwer Academic Publishers.


Kieran, C. (1998). The changing face of school algebra. Dans C. Alsina, J. Alvarez, B. Hodgson, C. Laborde et A. Perez (dir.). 8th International Congress on Mathematical Education, Selected Lectures (p. 271–290). Séville, Espagne : S.A.E.M. Thales.


Kieran, C. (1997). Mathematical concepts at the secondary school level: The learning of algebra and functions. Dans T. Nunes et P. Bryant (dir.). Learning and teaching mathematics: An international perspective (p. 133–158).


Kieran, C., Boileau, A. et Garançon, M. (1996). Introducing algebra by means of a technology-supported, functional approach. Dans N. Bednarz, C. Kieran et L. Lee (dir.). Approaches to algebra: Perspectives for research and teaching (p. 257–293). Dordrecht, Pays-Bas : Kluwer Academic.


Kieran, C. (1993). Functions, graphing, and technology: Integrating research on learning and instruction. Dans T.A. Romberg, E. Fennema et T.P. Carpenter (dir.). Integrating research on the graphical representation of functions (p. 189–237). Hillsdale, NJ : Lawrence Erlbaum.


Kieran, C. et Chalouh, L. (1993). The transition from arithmetic to algebra. Dans D.T. Owens (dir.). Research ideas for the classroom: Middle grades mathematics (p. 179–198). New York : Macmillan.


Kieran, C. (1992). The learning and teaching of school algebra. Dans D.A. Grouws (dir.). Handbook of research on mathematics teaching and learning (p. 390–419). New York : Macmillan.
Notes: Ce chapitre a été traduit à l’espagnol, au français et au japonais


Kieran, C. (1990). Cognitive processes involved in learning school algebra. Dans P. Nesher et J. Kilpatrick (dir.). Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (p. 96–112). Cambridge, UK : Cambridge University Press.


Kieran, C. (1990). Perspectives on mathematical literacy. Dans S.P. Norris et L.M. Phillips (dir.). Foundations of literacy policy in Canada (p. 109–126). Calgary, AB : Detselig.


Wagner, S. et Kieran, C. (1989). An agenda for research on the learning and teaching of algebra. Dans S. Wagner et C. Kieran (dir.). Research issues in the learning and teaching of algebra (p. 220–237). Reston, VA : National Council of Teachers of Mathematics.


Kieran, C. (1989). The early learning of algebra: A structural perspective. Dans S. Wagner et C. Kieran (dir.). Research issues in the learning and teaching of algebra (p. 35–56). Reston, VA : National Council of Teachers of Mathematics.


Kieran, C.: W., S. (1989). The Research Agenda Conference on Algebra: Background and issues. Dans S. Wagner et C. Kieran (dir.). Research issues in the learning and teaching of algebra (p. 1–10). Reston, VA : National Council of Teachers of Mathematics.


Kieran, C. (1988). Two different approaches among algebra learners. Dans A.F. Coxford (dir.). The ideas of algebra, K-12: 1988 Yearbook (p. 91–96). Reston, VA : NCTM.


Groen, G. et Kieran, C. (1983). In search of Piagetian mathematics. Dans H. Ginsburg (dir.). The development of mathematical thinking (p. 351–375). New York : Academic Press.


Kieran, C. (2009). Technology and mathematics education. PME Newsletter, 1(1), 5.


Kieran, C. (1991). Computers and algebra problem solving. The QAMT Journal (Québec Association of Mathematics Teachers), 1(8), 14–21.


Kieran, C. (1991). Helping to make the transition to algebra. Arithmetic Teacher, 38(7), 49–51. Récupéré de https://www.jstor.org/stable/41194818.


Kieran, C. (1991). Une approche aidante pour faire la transition avec l'algèbre. Bulletin AMQ, 31(2), 25–28.

Openurl imagette


Kieran, C. (2018). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice. New York : Springer.


Kieran, C., Pang, J. S., Shifter, D. et Ng, S.F. (2016). Early algebra: Research into its nature, its learning, its teaching.

Openurl imagette


Fey, J.T., Cuoco, A., Kieran, C., McMullin, L. et Zbiek, R.M. (dir.). (2003). Computer Algebra Systems in Secondary School Mathematics Education. Reston, VA : National Council of Teachers of Mathematics.


Stigler, J., Hiebert, J., Kieran, C., Wearne, D., Seago, N. et Hood, G. (2003). TIMSS video studies: Explorations of algebra teaching (Course Guide). Los Angeles : Intel.


Stigler, J., Hiebert, J., Kieran, C., et al. (2003). TIMSS video studies: Explorations of algebra teaching (Facilitator Guide). Los Angeles : Intel.


Kieran, C., Forman, E. et Sfard, A. (dir.). (2002). Learning discourse: Discursive approaches to research in mathematics education. Dordrecht, Pays-Bas : Kluwer Academic.

Openurl imagette


Bednarz, N., Kieran, C. et Lee, L. (dir.). (1996). Approaches to algebra: Perspectives for research and teaching. Dordrecht, Pays-Bas : Kluwer Academic.

Openurl imagette


Robitaille, D., Wheeler, D. et Kieran, C. (dir.). (1994). Selected Lectures from the 7th International Congress on Mathematical Education Québec, 17-23 August 1992 / Choix de conférences du 7e Congrès international sur l'enseignement des mathématiques : Québec, 17-23 août 1992. Québec : Presses de l'Université Laval.

Openurl imagette


Kieran, C. et Dawson, A.J. (1992). Current research on the teaching and learning of mathematics in Canada [Les recherches en cours sur l'apprentissage et l'enseignement des mathématiques au Canada]. Montréal : Canadian Mathematics Education Study Group / Groupe canadien d'étude en didactique des mathématiques. Récupéré de http://www.cmesg.org/wp-content/uploads/2015/01/CMESG-1992.pdf


Wagner, S. et Kieran, C. (dir.). (1989). Research issues in the learning and teaching of algebra. Reston, VA : National Council of Teachers of Mathematics.

Openurl imagette


Martinez, C. et Kieran, C. (2018). Strategies used by Mexican students in seeking structure on equivalence tasks. Dans T.E. Hodges, G.J. Roy et A.M. Tyminski (dir.). Strategies used by Mexican students in seeking structure on equivalence tasks, Greenville, NC. PME-NA.


Kieran, C. et Kilpatrick, J. (2017). ICMI awards ceremony. Dans G. Kaiser (dir.). Proceedings of the 13th International Congress on Mathematical Education, (p. 121-124). New York: Springer.


Kieran, C., Pang, J. S., Ng, S. F., Schifter, D. et Steinweg, A. S. (2017). Topic Study Group No. 10: Teaching and learning of early algebra. Dans G. Kaiser (dir.). Proceedings of the 13th International Congress on Mathematical Education, (p. 421-424). New York: Springer.


Kieran, C. (2016). Task design in mathematics education: Frameworks and exemplars. Dans S. Oesterle, D. Allan et J. Holm (dir.). Proceedings of the 2016 Annual Meeting of the Canadian Mathematics Education Study Group, (p. 45-66). Burnaby, BC: CMESG. Récupéré de http://www.cmesg.org/wp-content/uploads/2017/07/CMESG-2016.pdf.
Notes: 40th anniversary meeting, invited plenary


Kieran, C. (2015). ICMI Awards Report. Dans S.J. Cho (dir.). The Proceedings of the 12th International Congress on Mathematical Education : Intellectual and Attitudinal Challenges 8 July – 15 July, 2012, COEX, Seoul, Korea, (p. 13-15). Cham, Suisse: Springer. http://dx.doi.org/10.1007/978-3-319-12688-3_5.


Reid, D.A., Anderson, A., Thom, J., Suurtamm, C., Mamolo, A., Kieran, C.,... Chapman, O. (2014). Mathematics education in Canada: PME 2014 National Presentation. Dans P. Liljedahl, C. Nicol, S. Oesterle et D. Allan (dir.). Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education, (vol. 1, p. 263-273). Vancouver, BC: PME et PME-NA. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2036%20PME%2038%202014%20Proceedings%20Vol%201.pdf.


Martinez, C., Guzmán, J. et Kieran, C. (2013). El papel de CAS en la promoción del razonimiento algebraico y en el surgimiento de teoría. Dans L. López Vera (dir.). La Memoria del VI Seminario Nacionl de Tecnologia Computacional en la Enseñanza y el Aprendizaje de la Matemática, Nuevo Léon, Mexique. AMIUTEM.


Jeannotte, D., Kieran, C. et Cyr, S. (2012). Composantes d’un modèle du raisonnement mathématique : un aperçu. Dans F. Hitt et C. Cortés (dir.). Formation à la recherche en didactique des mathématiques, (p. 72-79). Longueuil, QC: Loze-Dion.


Solares, A. et Kieran, C. (2012). Equivalence of rational expressions: Articulating syntactic and numeric perspectives. Dans Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, (vol. 4, p. 99-106). Tapei, Taïwan: PME.


Kieran, C. et Drijvers, P. (2012). The didactical triad of theoretical framework, mathematical topic, and digital tool in research on learning and teaching. Dans Les Actes du Colloque Hommage à Michèle Artigue, (p. 5-24). Paris: Comité scientifique, Laboratoire de Didactique André Revuz.
Notes: Atelier 6: Technologies numériques pour l’enseignement des mathématiques


Martínez, C., Kieran, C. et Guzmán, J. (2012). The use of CAS in the simplification of rational expressions and emerging paper-and-pencil techniques. Dans Proceedings of the 34th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (p. 1089-1096). Kalamazoo, MI: Western Michigan University. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2034%202012%20Proceedings.pdf.


Guzmán, J., Kieran, C. et Martínez, C. (2011). Simplification of rational algebraic expressions in a CAS environment: A technical-theoretical approach. Dans B. Ubuz (dir.). Proceedings of the 35th Conference of the International Grooup for the Psychology of Mathematics Education, (vol. 2, p. 481-488). Ankara, Turquie: PME Program Committee.


Kieran, C., Tanguay, D. et Solares, A. (2011). Teachers participating in a research project on learning: The spontaneous shaping of researcher-designed resources within classroom teaching practice. Dans Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, (vol. 3, p. 81-88). Ankara, Turquie: PME Program Committee.


Guzmán, J., Kieran, C. et Martínez, C. (2010). The role of Computer Algebra Systems (CAS) and a task on the simplification of rational expressions designed with a technical-theoretical approach. Dans P. Brosnan, D.B. Erchick et L. Flevares (dir.). Proceedings of the 32nd annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (p. 1497-1505). Columbus, OH: The Ohio State University. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2032%202010%20Proceedings.pdf.


Kieran, C. et Guzmán, J. (2009). Developing teacher awareness of the roles of technology and novel tasks: An example involving proofs and proving in high school algebra. Dans M. Tzekaki, M. Kaldrimidou et H. Sakonidis (dir.). Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (PME), (vol. 3, p. 321-328). Thessaloniki, Grèce: PME Program Committee.


Kieran, C., Guzmán, J., Boileau, A., Tanguay, D. et Drijvers, P. (2008). Orchestrating whole-class discussions in algebra with CAS technology. Dans O. Figueras, J.L. Cortina, S. Alatorre, T. Rojano et A. Sepúlveda (dir.). Proceedings of the Joint Meeting of PME 32 and PME-NA XXX, (vol. 3, p. 249-256). Mexico: Cinvestav-UMSNH. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2030%202008%20Proceedings%20Vol%203.pdf.


Bartlo, J., Saldanha, L. et Kieran, C. (2007). Attending to structure and form in algebra: Challenges in designing CAS-centered instruction that supports construing patterns and relationships among algebraic expressions. Dans T. Lamberg et L.R. Wiest (dir.). Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (p. 136-139). Lake Tahoe, NV: University of Nevada, Reno. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2029%202007%20Proceedings.pdf.


Kieran, C. et Damboise, C. (2007). How can we describe the relation between the factored form and the expanded form of these trinomials? – We don’t even know if our paper-and-pencil factorizations are right”: The case for Computer Algebra Systems (CAS) with weaker algebra students. Dans J.H. Woo, H.C. Lew, K.S. Park et D.Y. Seo (dir.). Proceedings of the 31st conference of the International Group for the Psychology of Mathematics Education, (vol. 3, p. 105-112). Séoul, Corée du Sud: The Korea Society of Educational Studies in Mathematics. Récupéré de https://files.eric.ed.gov/fulltext/ED499416.pdf.


Sacristan, A.I. et Kieran, C. (2006). Bryan’s story: Classroom miscommunication about general symbolic notation and the emergence of a conjecture during CAS-based algebra activity. Dans J. Novotná, H. Moraová, M. Krátká et N. Stehliková (dir.). Proceedings of the 30th conference of the International Group for the Psychology of Mathematics Education, (vol. 5, p. 1-8). Prague, République tchèque: Charles University in Prague, Faculty of Education. Récupéré de https://files.eric.ed.gov/fulltext/ED496939.pdf.


Kieran, C., Boileau, A., Saldanha, L., Hitt, F., Tanguay, D. et Guzmán, J. (2006). Le rôle des calculatrices symboliques dans l’émergence de la pensée algébrique : le cas des expressions équivalentes. Dans Actes du colloque EMF2006 (Espace Mathématique Francophone, mai 2006), Sherbrooke, QC. EMF. Récupéré de http://emf.unige.ch/files/4714/5390/3446/EMF2006_GT5_Kieran.pdf.


Kieran, C., Drijvers, P.,(avec Boileau, A., Hitt, F., Tanguay, D., Saldanha, L. et Guzmán, J.). (2006). Learning about equivalence, equality and equation in a CAS environment: The interaction of machine techniques, paper-and-pencil techniques, and theorizing. Dans C. Hoyles, J.-B. Lagrange, L.H. Son et N. Sinclair (dir.). Proceedings of the Seventeenth ICMI Study Conference “Technology Revisited", Hanoi University of Technology, December 3-8, 2006, Berlin, Allemagne. International Commission on Mathematical Instruction (ICMI). Récupéré de https://www.mathunion.org/fileadmin/ICMI/files/Digital_Library/icmi-study-17/ICMI17proceedingsPart2.pdf.


Kieran, C. (2006). Reaction paper to Luis Radford’s plenary session. A response to “algebraic thinking and the generalization of patterns”. Dans S. Alatorre, J.L. Cortina, M. Sáiz et A. Méndez (dir.). Proceedings of the Twenty Eighth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (vol. 1, p. 22-29). Mérida, Mexico: Universidad Pedagógica Nacional. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2028%202006%20Proceedings.pdf.


Drijvers, P., Kieran, C.,(avec Boileau, A., Hitt, F., Tanguay, D., Saldanha, L. et Guzmán, J.). (2006). Reconciling factorizations made with CAS and with paper-and-pencil: The power of confronting two media. Dans J. Novotná, H. Moraová, M. Krátká et N. Stehliková (dir.). Proceedings of the 30th conference of the International Group for the Psychology of Mathematics Education, (vol. 2, p. 473-480). Prague, République tchèque: Charles University in Prague, Faculty of Education. Récupéré de https://files.eric.ed.gov/fulltext/ED496932.pdf.


Saldanha, L. et Kieran, C. (2005). A slippery slope between equivalence and equality: Exploring students’ reasoning in the context of algebraic instruction involving a computer algebra system. Dans G.M. Lloyd, M. Wilson, J.L.M. Wilkins et S.L. Behm (dir.). The 27th annual meeting of PME-NA, Roanoke, VA. Virginia Polytechnic Institute and State University. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2027%202005%20Proceedings.pdf.


Kieran, C. et Saldanha, L. (2005). Computer algebra systems (CAS) as a tool for coaxing the emergence of reasoning about equivalence of algebraic expressions. Dans H.L. Chick et J.L. Vincent (dir.). Proceedings of the 29 th Conference of the International Group for the Psychology of Mathematics Education, (vol. 3, p. 193-200). Melbourne, Australie: PME. Récupéré de http://www.emis.de/proceedings/PME29/PME29RRPapers/PME29Vol3KieranSaldanha.pdf.


Kieran, C. (2005). Some results from the PISA 2003 international assessment of mathematics learning: What makes items difficult for students? Dans H.L. Chick et J.L. Vincent (dir.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, (vol. 1, p. 83-86). Melbourne, Australie: PME. Récupéré de http://www.emis.de/proceedings/PME29/PME29Plenaries/PME29JonesEtAlPanel.pdf.
Notes: plenary panel contribution


Proulx, J., Kieran, C. et Bednarz, N. (2004). Case studies of future secondary level mathematics teachers’ mode of explaining. Dans D.E. McDougall et J.A. Ross (dir.). Proceedings of the Twenty-sixth Annual Meeting North American Chapter of the International Group for the Psychology of Mathematics Education, (vol. 3, p. 1253-1264). Toronto, ON: PME-NA. Récupéré de https://www.pmena.org/pmenaproceedings/PMENA%2026%202004%20Proceedings%20Vol%203.pdf.


Kieran, C. (2004). The equation / inequality connection in constructing meaning for inequality situations. Dans M. Johnsen Høines et A. Berit Fuglestad (dir.). The 28th International Conference of the International Group for the Psychology of Mathematics Education, Bergen, Norway ,14–18 July 2004, (vol. 1, p. 143-148). Bergen, Norvège: PME. Récupéré de https://files.eric.ed.gov/fulltext/ED489178.pdf.


Kieran, C. et Guzmán, J. (2004). Tâche, technique et théorie : une recherche sur l'instrumentation de la calculatrice à affichage graphique et la co-émergence de la pensée numérique chez des élèves de 12 à 15 ans. Dans J.B. Lagrange, D. Guin M. Artigue, C. Laborde, D. Lenne et L. Trouche (dir.). Intégration des technologies dans l’enseignement des mathématiques.
Notes: Actes en ligne du Colloque Européen ITEM, Reims, juin 2003


Kieran, C. et Guzmán, J. (2003). The spontaneous emergence of elementary number-theoretic concepts and techniques in interaction with computing technology. Dans N.A. Pateman, B.J. Dougherty et J.T. Zilliox (dir.). Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education held jointly with the 25th Conference of PME-NA, (vol. 3, p. 141-148). Honolulu, HI: College of Education, University of Hawai. Récupéré de https://files.eric.ed.gov/fulltext/ED500858.pdf.


Guzmán, J. et Kieran, C. (2002). The role of calculators in instrumental genesis: The case of Nicolas and factors and divisors. Dans A.D. Cockburn et E. Nardi (dir.). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, Norwich, Angleterre. School of Education and Professional Development, University of East Anglia. Récupéré de https://files.eric.ed.gov/fulltext/ED476065.pdf.


Hershkowitz, R. et Kieran, C. (2001). Algorithmic and meaningful ways of joining together representatives within the same mathematical activity: An experience with graphing calculators. Dans M. van den Heuvel-Panhuizen (dir.). Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, (vol. 1, p. 96-107). Utrecht, Pays-Bas: Utrecht University, Freudenthal Institute. Récupéré de https://files.eric.ed.gov/fulltext/ED466950.pdf.


Kieran, C. (2001). Looking at the role of technology in facilitating the transition from arithmetic to algebraic thinking through the lens of a model of algebraic activity. Dans K. Stacey, H. Chick, J. Vincent et J. Vincent (dir.). Proceedings of the 12th ICMI Study Conference on the future of the teaching and learning of algebra, Melbourne, Australie. ICMI-12 Program Committee.


Guzmán, J., Kieran, C. et Squalli, H. (2001). The multi-line-screen calculator and the emergence of numerical strategies in secondary 1, 2, and 3 students. Dans M. van den Heuvel-Panhuizen (dir.). Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, (vol. 1, p. 312). Utrecht, Pays-Bas: Utrecht University, Freudenthal Institute. Récupéré de https://files.eric.ed.gov/fulltext/ED466950.pdf.


Bergeron, J.C., Herscovics, N. et Kieran, C.(dir.). (1987). Proceedings of the 11th International Conference for the Psychology of Mathematics Education, Montréal. Université de Montréal.
Notes: 3 volumes


Kieran, C. (2014). What Does Research Tell Us About Fostering Algebraic Reasoning in School Algebra?. National Council of Teachers of Mathematics.


Kieran, C. (2014). What Does Research Tell Us About Fostering Algebraic Thinking in Arithmetic?. National Council of Teachers of Mathematics.


Kieran, C. (2009). Some remarks on the documentational approach. Site web: Educmath, France. Dans G. Gueudet et L. Trouche. L'approche documentaire : qu'est-ce que c'est ?.


Kieran, C. (2007). What do students struggle with when first introduced to algebra symbols?. Récupéré de http://www.nctm.org/news/content.aspx?id=12332


Kieran, C. (2007). What do we know about the teaching and learning of algebra in the elementary grades?. Récupéré de http://www.nctm.org/news/content.aspx?id=12326


Kieran, C., Forman, E. et Sfard, A. (dir.). (2001). Bridging the individual and the social: discursive approaches to research in mathematics education [Numéro spécial]. Educational Studies in Mathematics, 46(1-3). Récupéré de https://www.jstor.org/stable/i277397
Notes: Direction d'un numéro


Kieran, C. (dir.). (1995). New perspectives on school algebra: Papers and discussions of the ICME-7 Algebra Working Group [Numéro spécial]. Journal of Mathematical Behavior, 14(1). http://dx.doi.org/10.1016/0732-3123(95)90045-4
Notes: Direction d'un numéro


Kieran, C. (1994). Algebra. Dans A. Lewy (dir.). The International Encyclopedia of Curriculum (p. 835-836). Oxford, Royaume-Uni : Pergamon.


Kieran, C. (1994). Algebra in school. Dans T. Husén et T. N. Postlethwaite (dir.). The international encyclopedia of education (2e éd., vol. 6, p. 3678-3686). Oxford, Royaume-Uni : Elsevier Ltd.


Distinctions
  • Présidente du Comité "ICMI Klein and Freudenthal Awards" de la Commission Internationale de l'Enseignement Mathématique (2011-2016)
  • Présidente du International Group for the Psychology of Mathematics Education (PME) (1992-1995)
  • Nommée au Mathematics Learning Study, un comité parrainé par le National Science Foundation et le National Academy of Science (E.-U.) (1999)
  • Élue Membre du Conseil d'administration, National Council of Teachers of Mathematics (2001-2004)
  • Nommée au Comité d'honneur du Computer Algebra in Mathematics Education (CAME6) (2009)
  • Médaille du Gouverneur-Général du Canada (1960)

Département de mathématiques

Le Département de mathématiques de l’UQAM regroupe plus d’une quarantaine de professeurs, et offre 11 programmes au premier cycle et cycles supérieurs en plus de répondre aux besoins de plusieurs autres programmes de premier cycle. Les activités du département, qu'elles soient en recherche ou en enseignement, couvrent un large spectre, incluant la didactique des mathématiques à tous les niveaux scolaires, les mathématiques fondamentales, la statistique, l'actuariat et les mathématiques financières.

Coordonnées

Département de mathématiques
Local PK-5151
201, Avenue du Président-Kennedy
Montréal (Québec) H2X 3Y7